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LETTER TO THE EDITOR 

Quasi-particle states of a linear chain of vortices in a 
mixed-state superconductor 

N R Claughton and C J Lambert 
School of Physics and Materials, Lancaster University, Lancaster LA1 4YB, UK 

Received 19 July 1993 

Abstract. We examine the low-lying quasi-panicle stam of a chain of vorlices conrained within 
a thin slab of superconductor and demonsirate that bound stam of individual vortices hybridize 
to form bands of exended stam. As a consequence of the phase gradient amund a vortex, one 
such band is centred on m o  energy and will therefore cnntribule to quasi-particle Vanspon at 
energies far below the superconducting kansition temperalure. 

Observations of the de Haas-van Alphen effect in the mixed state of strongly type U 
superconductors [ I ]  and theoretical predictions of magnetic quantum oscillations near the 
upper critical field [Z] have led to increasing interest in the quantum properties of dense 
vortex structures. If the contribution to quantum transport from quasi-particles is to be 
understood, it is necessary to ask how bound states in the cores of nearby vortices hybridize 
to form low-lying energy bands. Such bands, if they exist, will allow quasi-particle transport 
to occur at temperatures much less than the superconducting transition temperature. Of 
particular interest is the question of whether or not states exist at zero energy, since such 
states would allow a quasi-particle connibution to persist even to zero temperature. 

The problem of computing quasi-panicle states in the presence of a vortex lattice is 
complicated by the fact that although the magnitude of the order parameter is periodic, the 
phase is not. Consequently Bloch’s theorem cannot be. used to reduce the problem to that 
of a single unit cell. In this Letter, to gain insight into the nature of quasi-particle states, 
we consider the related problem of a linear chain of vortices, to which Bloch’s theorem can 
be fruitfully applied. 

Consider a linear chain of vortices aligned parallel to the z axis. Since the system 
is translationally invariant in the z direction, all quasi-particle states can be chosen to be 
proportional to a plane wave of the form exp ik,z. The motion in the x ,  y plane is then 
described by the Bogoliubov4e Gennes equation 

where T is a position vector orthogonal to the L axis. In what follows we choose k, = 0 
and Ho to be a tight-binding model on a two-dimensional, triangular lattice of infinite length 
and width W sites. The matrix Ho has elements (Ho);~ = ~ S i j  - US,,,, where j ;  is the jth 
nearest neighbour of site i and after neglecting a small effect on the eigenvalue spectrum 
due to the presence of a vector potential [3], the nearest neighbour coupling strength v is 
chosen to be a constant of value unity. In what follows, except when stated otherwise, the 
diagonal element t will be set to zero. 
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The matrix A has elements Aij = &jA(ri), where in the presence of a chain of 
vortices, the superconducting order parameter A ( r )  will be chosen to be periodic in the 
x direction, with period L. After taking advantage of translational invariance in the x 
direction, equation (1) can be reduced to a problem involving a single unit cell and then 
diagonalized numerically to yield the quasi-particle band stmcture at low energies. In what 
follows, with E = 0, since the eigenvalue spectrum is symmetric about E = 0 and k, = 0, 
where kx is the x component of the Bloch wavevector, only results for positive E and k, 
are shown. 

0 ? T O  n ; O  n; 

Figurp 1. Quasi-panicle dispersion curves for simple model order parameters on a slab of 
width W = 5 sites and unit cell of length L = 11 sites, obtained from equation (1) with 
U = I ,  F = 0. Graph (i) shows results for a constant order paramerer A(P) = Ao. where 
A0 = 112. In graphs (ii) and (iii) the order parameter is defined by A(r )  = Aolcos2IrxjLI and 
A(T) = AocosZnx/L respectively. 

One question of particular importance is whether or not there exists a band of quasi- 
particle states at E = 0, because in the absence of such states, an exponential decrease in 
the quasi-particle contribution to transport will occur at low enough temperatures. Before 
presenting results for a chain of vortices, it is illuminating to analyse some simple model 
order parameters. Figure I(i) shows quasi-particle dispersion curves arising from a spatially 
independent order parameter A(r) = A.0, where A0 = 1/2. For this calculation, the slab 
width is W = 5 sites and the unit cell is of length L = 11 sites. As expected, the resulting 
folded band structure exhibits an energy gap at E = Ao. Figure I(ii) shows results for the 
same values of W and L, but with a one-dimensional order parameter variation of the form 
A(r) = Aolcos21rxjLl. This demonstrates that the presence of nodes in the order parameter 
does indeed lead to bound states below the bulk energy gap, which hybridize to form bands. 
Figure I(iii) shows results arising from a variation of the form A(r) = Aocos2~x/L.  In 
this case, the magnitude of A(r) is the same as in figure l(ii), but in addition, the order 
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parameter can change sign. Figure I(iii) illustrates that the effect of such a sign change is 
to generate a band of states centred on E = 0. 

Before proceeding, it is also of interest to examine the lowest bound state energy EO 
obtained from the discrete model ( I )  for a single isolated voltex, and to compare the result 
with the value Eo predicted by de Gennes [3]. For an order parameter variation of the form 
A ( r )  = lA(r)lexp(iO), where jA(r)l = Aor/R for r < R and IA(r)l = A0 for r z R, the 
latter predicts 

Eo = gAo(ZkFR)-l (2)  

where EF is the Fermi energy, k p  the Fermi momentum and g a dimensionless parameter of 
order unity. Equation (1) defines a discrete model with a non-spherical Fermi surface, while 
the analysis of reference 131 applies to a continuum model with a spherical Fermi surface. 
Nevertheless such a comparison should demonstrate whether or not the lowest bound state 
energy is sensitive to lauice structure. 

0 9 
E ,  

yiure 2. Graphs showing the ratio of the numerical result Eo and lhe continuum prediction 
Eo for Ihe lowest energy of an isolated vortex as a funclion of *e Fermi energy EF.  Numerical 
results are for a system of widlh W = 13 sites and of length L = 13 sites. The top g a p h  s h o w  
results for a core radius of R = 3 sites, and a maximum order parameter of A0 = 213, while 
the values for lhe bottom graph are R = 4 sites and Ao = 112. in each case the position of the 
F m i  energy is measured from b e  bottom of the band and is in mils of the hopping strength U. 

Figure 2 shows the ratio of the numerical result EO to the continuum results Eo as 
a function of E F .  Physically R is expected to be of the order of a coherence length - k;'EF/AO and therefore both kF and R vary with EF. For the purpose of comparing EO 
with EO, we fix R and allow only kF to vary. For the model of equation (I) ,  with a lattice 
constant a ,  typically k;' - a and EF - U and therefore for the purpose of comparing 
with equation (2 )  we choose R = 2a/(Ao/u) .  With this choice, equation (2)  becomes 
EO = gf.A;/~)(4kpo)-'. For a triangular lattice with EF << U ,  where the Fermi surface is 
almost circular, akF = ( E F / Z ~ ) 1 / 2  and therefore the continuum prediction reduces to 

I!& = ~ ( A ~ / ~ U ) ( E F / ~ U ) - ~ ' ~ .  (3) 

For the model of equation ( I ) ,  with U = 1, since EF = --E +6, the Fermi energy is most 
conveniently changed by varying the diagonal elements E .  The top graph of figure 2 shows 
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results for the ratio i?o/Eo as a function of EF, for a vortex of size R = 30 embedded in a 
system of size I3 x 13 sites, with A0 = 2/3. The bottom graph of figure 2 shows results for 
the same system, except with R = 40, A0 = 1/2. In both case the dimensionless parameter 
g has been set to unity. Although the numerical results exhibit some structure associated 
with the periodicity of the underlying lattice, provided that Ep does not approach the top 
of the tight-binding band and EF/Ao c 1, the discrete model yields values that are of the 
same order as those obtained from a continuum model [3]. 

(ii) (iii) 
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Figure 3. Quasi-pmicle dirpmion c m e s  for an order p m e l e r  ofthe ryp: dcfined in equation 
(4) for a slab width of M' = 5 r im.  Graphs (i). (t i)  and (iii) show results for Ihe cases L = 11. 
L = 19 and L = 25 rcspcctively. 

To model a linear chain of vortices in a thin slab of superconductor, in view of the 
Ginzburg-Landau solution for A(r) near He? [4], we choose a spatial variation of the form 

= A~M(y)exp(iqx) + fz(y)exp(-iqx)l. (4) 

In this equation, f;(y) = exp[-(y - yj)2Ai/2], yl = dJ2 and y~ = W - d,/Z, where 
dc = I .64/Ao is the film thickness above which the nucleation site for superconductivity is 
no longer located at the mid-point of the film [4]. Figures 3(i), 3(ii) and 3(iii) show results 
for (W = 5, L = I I ) ,  (W = 5, L = 19) and (W = 5, L = 25) respectively. As expected, 
the degree of hybridization decreases as the vortex spacing L / 2  increases. Similarly, figures 
4(i), 4(ii) and 4(iii) illustrate results for the cases (W = 7, L = I I ) ,  (W = 7, L = 19) 
and (W = 7, L = 25). Since the nucleation centres yI and yz are a fixed distance from 
the edges of the slab, equation (4) yields an order parameter that is now more strongly 
suppressed at the slab centre than that used in figure 3. Consequently for an isolated vortex, 
the low-lying-level separation is decreased. For a chain of widely separated vortices typified 
by the W = 7, L = 25 results, this leads to a more densely packed spectrum of energy 
bands. 
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Figure 4. Quasi-particle dispersion curves for an order parameter of the rype defined in equation 
(4) for a slab widlh of W = 7 sites. Graphs (i), (ii) and (iii) show results for the cases L = 1 1 ,  
L = 19 and L = 25 respectively. 

E 
0 
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Figure 5. A magnibd portion of ule graph of figure 3(iii) where W = 5 and L = 25, which 
indicates that the lowest energy band does indeed pass through E = 0 in the case of more 
widely spaced vortices. 

In this work, we have presented results for the low-lying quasi-particle bands associated 
with a linear chain of vortices. In all cases, figures 3 and 4 show that there exists a band 
of states centred on E = 0, resulting from the phase change of K at a vortex centre. In 
the case of the more widely spaced vortices, this is not immediately obvious and so figure 
5 shows a magnification of pari of the lowest band on the graph of figure 3(iii), for which 
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(W = 5 ,  L = 25). The higher resolution on this scale indicates that this energy band does 
indeed pass through E = 0. and therefore, for an ordered chain of vortices, we do not 
expect a low-temperature cut-off in the quasi-particle contribution to transport properties. 

This work is supported by the SERC, the EC, the MOD and NATO. It has benefited from 
useful conversations with M Springford and B Gyorffy. 
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